Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 366(6461): 97-100, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31604308

RESUMO

Cosmological simulations predict that the Universe contains a network of intergalactic gas filaments, within which galaxies form and evolve. However, the faintness of any emission from these filaments has limited tests of this prediction. We report the detection of rest-frame ultraviolet Lyman-α radiation from multiple filaments extending more than one megaparsec between galaxies within the SSA22 protocluster at a redshift of 3.1. Intense star formation and supermassive black-hole activity is occurring within the galaxies embedded in these structures, which are the likely sources of the elevated ionizing radiation powering the observed Lyman-α emission. Our observations map the gas in filamentary structures of the type thought to fuel the growth of galaxies and black holes in massive protoclusters.

2.
Science ; 348(6232): 314-7, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25883353

RESUMO

Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores.

3.
Nature ; 463(7282): 781-4, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20148033

RESUMO

Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

4.
J Bacteriol ; 136(2): 808-11, 1978 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-361724

RESUMO

Seven of eight plasmids of incompatibility group P were found to code for the capacity to propagate bacteriophage IKe in Escherichia coli. Six of the seven plasmids allowed propagation of IKe by one bacterial host (RG172) but not by another (RG176); the other plasmid allowed IKe propagation by both hosts. IKe propagation by a number of E. coli K-12 strains was quite variable. IKeh, an extended host range mutant of IKe, was found to plaque specifically on N+ and P+ strains.


Assuntos
Colífagos/crescimento & desenvolvimento , Escherichia coli/genética , Genes , Plasmídeos , Colífagos/genética , Mutação , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...